Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Growing demands on ocean resources are placing increasing pressures on ocean ecosystems. To assess the current state of knowledge of future human pressures on the ocean, we conducted a literature review of recent and projected trends of 25 anthropogenic pressures, comprising most of the identified human pressures on the global oceans. To better understand gaps in the data, we developed a comprehensive framework of the activities contributing to each pressure. All pressures were allocated to five categories (biological disruption, disturbance and removal, altered ocean chemistry, pollution, and climate pressures). All pressures are expected to worsen in the future under business‐as‐usual scenarios (or similar) based on past trajectories and/or models of future scenarios. Eight of the pressures assessed have not been projected into the future (diseases and pathogens, introduced coastal wildlife predation, disruption to sediment dynamics, wildlife strikes, organic and inorganic chemical pollution, light and noise pollution), likely due to the limited availability of data describing current pressures, the challenges of modeling future pressures, and high levels of uncertainty. We thus recommend they receive priority attention to assess their likely future trajectories, given their potential magnitude of influence.more » « less
-
Pokkathappada, Abdul Azeez (Ed.)Anthropogenic stressors to marine ecosystems from climate change and human activities increase extinction risk of species, disrupt ecosystem integrity, and threaten important ecosystem services. Addressing these stressors requires understanding where and to what extent they are impacting marine biological and functional diversity. We model cumulative risk of human impact upon 21,159 marine animal species by combining information on species-level vulnerability and spatial exposure to a range of anthropogenic stressors. We apply this species-level assessment of human impacts to examine patterns of species-stressor interactions within taxonomic groups. We then spatially map impacts across the global ocean, identifying locations where climate-driven impacts overlap with fishing, shipping, and land-based stressors to help inform conservation needs and opportunities. Comparing species-level modeled impacts to those based on marine habitats that represent important marine ecosystems, we find that even relatively untouched habitats may still be home to species at elevated risk, and that many species-rich coastal regions may be at greater risk than indicated from habitat-based methods alone. Finally, we incorporate a trait-based metric of functional diversity to identify where impacts to functionally unique species might pose greater risk to community structure and ecosystem integrity. These complementary lenses of species, function, and habitat provide a richer understanding of threats to marine biodiversity to help inform efforts to meet conservation targets and ensure sustainability of nature’s contributions to people.more » « less
-
Abstract The production and consumption of food is one of the main drivers of environmental change globally. Meanwhile, many populations remain malnourished due to insufficient or unhealthy diets. Increasingly, dietary shifts are proposed as a means to address both environmental and health concerns. We have a limited understanding of how dietary shifts could alter where food is produced and consumed and how these changes would affect the distribution of environmental pressures both globally and across different groups of people. Here we combine new food flow data linking producing to consuming country with environmental pressures to estimate how a global shift to each of four diets (Indian, EAT-Lancet, Mediterranean, and mean Food Based Dietary Guidelines (FBDGs)) could affect environmental pressures at the global, country income group, and country level. Globally, cumulative pressures decrease under the Indian, EAT-Lancet, and Mediterranean scenarios and increase under FBDGs. On average, low income countries increase their cumulative consumption and production pressures while high income countries decrease their consumption pressures, and typically decrease their production pressures. Increases in low income countries are likely due to the nutritional inadequacy of current diets and the corresponding increases in consumption quantities with a shift to our diet scenarios. Despite these increases, we believe that three out four of our simulated dietary shifts can be seen as a net benefit by decreasing global pressures while low income countries increase pressures to adequately feed their populations. Additionally, considering principles of fairness applied, some nations are more responsible for causing historical environmental pressures and should shoulder more of the change. To facilitate more equitable shifts in global diets, resources, capacity, and knowledge sharing of sustainable agricultural practices are critical to minimize the increases in pressures that low income countries would incur to adequately feed their populations.more » « less
An official website of the United States government
